https://github.com/ekmett/ad

Last synced: about 1 month ago

Repository metadata:

Automatic Differentiation


Owner metadata:


Committers metadata

Last synced: about 1 month ago

Total Commits: 598
Total Committers: 34
Avg Commits per committer: 17.588
Development Distribution Score (DDS): 0.323

Commits in past year: 13
Committers in past year: 2
Avg Commits per committer in past year: 6.5
Development Distribution Score (DDS) in past year: 0.385

Name Email Commits
Edward Kmett e****t@g****m 405
Ryan Scott r****t@g****m 72
Alex Lang me@a****a 43
Julian Brunner j****r@g****m 11
Oleg Grenrus o****s@i****i 8
Anil Karaka a****a@l****n 8
Sofus Mortensen s****n@g****m 7
Barak A. Pearlmutter b****t@c****e 4
Eric Mertens e****s@g****m 4
Johannes Röhl j****l@g****e 4
Joe Hermaszewski g****t@m****l 3
Ben Gamari b****s@g****m 2
Björn von Sydow b****w@g****m 2
Chad Scherrer c****r@g****m 2
Julian Brunner j****r@p****e 2
Masahiro Sakai m****i@g****m 2
Takayuki Muranushi m****i@g****m 2
Adam Sandberg Eriksson a****m@s****e 1
Anthony Cowley a****y@s****u 1
Carter Tazio Schonwald c****d@g****m 1
Christopher White g****d@g****m 1
Dan Haraj d****j@g****m 1
Edward A. Kmett e****t@c****m 1
Hiromi ISHII k****o@g****m 1
Ian Dewan i****n@n****a 1
Johannes Röhl j****l@u****e 1
Krzysztof Gogolewski k****i@g****m 1
Lennart Augustsson l****t@a****t 1
Ryan Scott r****t@g****m 1
Takano Akio t****k@a****o 1
and 4 more...

Issue and Pull Request metadata

Last synced: about 1 month ago


Package metadata

hackage: ad

Forward-, reverse- and mixed- mode automatic differentiation combinators with a common API. Type-level "branding" is used to both prevent the end user from confusing infinitesimals and to limit unsafe access to the implementation details of each Mode. Each mode has a separate module full of combinators. Numeric.AD.Mode.Forward provides basic forward-mode AD. It is good for computing simple derivatives. Numeric.AD.Mode.Reverse uses benign side-effects to compute reverse-mode AD. It is good for computing gradients in one pass. It generates a Wengert list (linear tape) using Data.Reflection. Numeric.AD.Mode.Kahn uses benign side-effects to compute reverse-mode AD. It is good for computing gradients in one pass. It generates a tree-like tape that needs to be topologically sorted in the end. Numeric.AD.Mode.Sparse computes a sparse forward-mode AD tower. It is good for higher derivatives or large numbers of outputs. Numeric.AD.Mode.Tower computes a dense forward-mode AD tower useful for higher derivatives of single input functions. Numeric.AD computes using whichever mode or combination thereof is suitable to each individual combinator. While not every mode can provide all operations, the following basic operations are supported, modified as appropriate by the suffixes below: grad computes the gradient (partial derivatives) of a function at a point. jacobian computes the Jacobian matrix of a function at a point. diff computes the derivative of a function at a point. du computes a directional derivative of a function at a point. hessian computes the Hessian matrix (matrix of second partial derivatives) of a function at a point. The following suffixes alter the meanings of the functions above as follows: ' -- also return the answer With lets the user supply a function to blend the input with the output F is a version of the base function lifted to return a Traversable (or Functor) result s means the function returns all higher derivatives in a list or f-branching Stream T means the result is transposed with respect to the traditional formulation. 0 means that the resulting derivative list is padded with 0s at the end. NoEq means that an infinite list of converging values is returned rather than truncating the list when they become constant

  • Homepage: http://github.com/ekmett/ad
  • Licenses: BSD-3-Clause
  • Latest release: 4.5.6 (published 8 months ago)
  • Last Synced: 2024-11-11T03:09:53.253Z (about 1 month ago)
  • Versions: 90
  • Dependent Packages: 4
  • Dependent Repositories: 333
  • Downloads: 84,223 Total
  • Rankings:
    • Dependent repos count: 1.255%
    • Downloads: 1.582%
    • Average: 3.098%
    • Stargazers count: 3.713%
    • Forks count: 4.374%
    • Dependent packages count: 4.566%
  • Maintainers (3)

Dependencies

.github/workflows/haskell-ci.yml actions
  • actions/cache v2 composite
  • actions/checkout v2 composite
ad.cabal hackage
  • ad * benchmark
  • base * benchmark
  • criterion * benchmark
  • erf * benchmark
  • HerbiePlugin ==0.1.*
  • adjunctions >=4.4 && <5
  • array >=0.4 && <0.6
  • base >=4.9 && <5
  • comonad >=4 && <6
  • containers >=0.5 && <0.7
  • data-reify ==0.6.*
  • erf ==2.0.*
  • free >=4.6.1 && <6
  • nats >=0.1.2 && <2
  • reflection >=1.4 && <3
  • semigroups >=0.16 && <1
  • tagged >=0.7 && <1
  • transformers >=0.5.2.0 && <0.7
  • ad * test
  • base * test
  • tasty * test
  • tasty-hunit * test